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Abstract

We consider the query complexity of cake cutting in the standard query model
and give lower and upper bounds for computing approximately envy-free, perfect,
and equitable allocations with the minimum number of cuts. The lower bounds
are tight for computing contiguous envy-free allocations among n = 3 players
and for computing perfect and equitable allocations with minimum number of cuts
between n = 2 players. For ϵ-envy-free allocations with contiguous pieces, we
also give an upper bound of O(n/ϵ) and lower bound of Ω(log(1/ϵ)) queries for
any number n ≥ 3 of players.
We also formalize moving knife procedures and show that a large subclass of this
family, which captures all the known moving knife procedures, can be simulated
efficiently with arbitrarily small error in the Robertson-Webb query model.

1 Introduction

We consider the classical cake cutting problem due to Steinhaus [62], which captures the fair division
of a heterogeneous resource—such as land, time, mineral deposits, fossil fuels, and clean water
[56]—among several parties with equal rights but different interests over the resource. This model
has inspired a rich body of literature in mathematics, political science, economics [58, 11, 49], and
computer science [15, 27]. Implementations of fair division algorithms can be found on Spliddit [45].

Mathematically, the cake is represented as the unit interval [0, 1]. There is a set of n players with
valuation functions induced by probability measures over [0, 1]. Given such a resource, the goal is to
compute an allocation of the cake in which every player is content with the piece received. A major
challenge for a mediator trying to compute a desirable allocation is that the preferences of the players
are private. Discrete cake cutting protocols operate in a query model, due to Robertson and Webb
[68], in which a center that does not know the players asks them cut and evaluate queries until it
manages to extract enough information about their preferences to determine a fair allocation.

An example of a cake cutting protocol is Cut-and-Choose, which dates back to more than 2500 years
ago when it appeared in written records in the context of land division. Cut-and-Choose can be used
to obtain an envy-free allocation among two players, Alice and Bob, trying to divide a heterogeneous
resource (e.g. a birthday cake with different toppings): First Alice cuts the cake in two pieces of
equal value to her, then Bob picks his favorite and Alice takes the remainder.

Fairness Notions. Two of the prominent fairness notions, envy-freeness and proportionality, have
been the subject of in depth study from a computational point of view. Proportionality requires that
each player gets their fair share of the resources, which is their total value for the whole cake divided
by the number of players, while envy-freeness is based on social comparison and means no player
should want to swap their piece with anyone else’s. The two notions are not necessarily comparable,
since envy-freeness can be trivially achieved by throwing away the entire resource, which is not
true for proportionality. However, when the entire cake must be allocated, envy-freeness implies
proportionality and can be surprisingly hard to reach.
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The problem of finding an envy-free cake cutting protocol was suggested by Gamow and Stern [41]
and solved by Selfridge and Conway for three players (cca. 1960, see, e.g., [58, 11]) and by Brams
and Taylor [14] for any number of players. From a computational point of view, the Brams and
Taylor protocol has the major drawback that its runtime can be made arbitrarily long by setting up the
valuations of the players appropriately. In 2016, Aziz and Mackenzie [6] announced a breakthrough
by giving the first bounded envy-free cake cutting protocol for any number of players, where bounded
means that the number of queries is only a function of the number of players, and not of the valuations.

The query complexity of proportionality is well understood. The problem of computing a proportional
allocation with contiguous pieces can be solved with O(n log n) queries in the Robertson-Webb model
by running a protocol due to Even and Paz [36], with a matching lower bound due to Woeginger and
Sgall [68] for contiguous pieces; this was extended to arbitrary allocations by Edmonds-Pruhs [34].

In contrast, for the query complexity of envy-free cake cutting a lower bound of Ω(n2) was given by

Procaccia [55] and an upper bound of O
(
nnnnnn )

by Aziz and Mackenzie [6]. The algorithm in

[6] outputs highly fragmented allocations on some instances. Envy-free allocations with contiguous
pieces do in fact exist for very general valuations 1 (see, e.g., [61, 63, 65]), but cannot be com-
puted in the Robertson-Webb model [64] except for specific classes such as polynomial functions [16].

Approximate Fairness. In light of this impossibility, it makes sense to study the computation of
ϵ-envy-free allocations with few cuts. For a general utility model where the valuations are arbitrary
functions (not necessarily induced by probability measures), bounds on the query complexity of
approximate envy-free cake cutting with contiguous pieces were given in [32] together with a proof
of PPAD-hardness. While the problem of computing contiguous ϵ-envy-free allocations is in PPAD
[65], neither the computational hardness nor the query lower and upper bounds in [32] carry over
(or are close to tight) in the usual cake cutting model where the valuation functions are induced by
probability measures, which leaves wide open the complexity of this problem.

Aside from proportionality and envy-freeness, a third notion of fairness is known as equitability, in
which each player must receive a piece worth the same value. Equitable and proportional allocations
with contiguous pieces were shown to exist by Cechlarova, Dobos, and Pillarova [24]. The compu-
tational complexity of approximate equitability was investigated by Cechlarova and Pillarova [25],
who gave an upper bound of O

(
n
(
log n+ log ϵ−1

))
for computing an ϵ-equitable and proportional

allocation with contiguous pieces for any number of players, and by Procaccia and Wang [57]
who showed a lower bound of Ω

(
log ϵ−1/ log log ϵ−1

)
for finding an ϵ-equitable allocation (not

necessarily contiguous) for any number of players.

More stringent fairness requirements are also possible, such as (i) the necklace splitting problem, for
which the existence of fair solutions was established by Neyman [50], with a bound on the number of
cuts given by Alon [2], (ii) the more general notion of exact division 2, which generalizes necklace
splitting and was shown to exist by [33], and (iii) the competitive equilibrium from equal incomes,
the existence of which was determined by Weller [67]. The necklace splitting problem is contained
in PPA and in fact is PPAD-hard [38]. A well known instantiation of the necklace splitting solution is
that of perfect allocations, which are simultaneously proportional, envy-free, and equitable.

Related Work. The complexity and existence of various fairness concepts in cake cutting and related
models, such as cake cutting where the resource is a chore, pie, multiple homogeneous goods, multiple
discrete goods have also been studied (see, e.g., [29, 52, 4, 22, 42, 30, 17, 13, 23, 53, 9, 1, 18]). The
communication complexity of cake cutting was studied in [21].

Since the initial manuscript of our paper was circulated, there have been many follow-up works.
The complexity of cake cutting (e.g. envy-free division, consensus halving, necklace splitting) was
studied, e.g., in [31, 43, 28, 44, 40, 39, 3, 54, 8]. Indivisible goods were studied, e.g., in [51] for their
query complexity and in [48, 26] for algorithms. Cake cutting with separation was studied in [35],
fair division of a graph in [10], multi-layered cakes in [46], fair cutting in practice in [47], and cake
cutting where some parts are good and others bad in [59] and when the whole cake is a “bad” in [37].

1Such allocations exist even for valuations not induced by probability measures (see, e.g., [61], [63] for a
proof based on a topological lemma on intersection of sets, and [65] for a proof using Sperner’s lemma).

2The problem of exact division is the following: given a cake with n players and target non-negative weights
w1 . . . wk, find a partition A = (A1, . . . , Ak) such that Vi(Aj) = wj for each player i and every piece Aj .
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2 Our Contribution

In this paper we consider the query complexity of cake cutting in the standard Robertson-Webb
(RW) query model [68] for several fairness notions: envy-free, perfect, and equitable allocations
with the minimum number of cuts. Such allocations are known to exist for each instance, but several
impossibility results preclude their computation in the standard query model [64, 25]. Nevertheless,
the computation of approximately fair solutions is possible by discretizing the cake in very small
pieces. For the fairness notions we consider, a number of queries that is polynomial in n and
1/ϵ suffices to find ϵ-fair allocations for several fairness concepts, such as O(n/ϵ) for contiguous
envy-free and O(n(k − 1)/ϵ) for (ϵ, k)-measure splittings.

2.1 Lower Bounds

Our first main contribution is to give lower bounds for the problems of computing approximately fair
allocations (with deterministic protocols).

Theorem 2.1. Consider a cake cutting problem. In the standard (Robertson-Webb) query model, for
each ϵ > 0:

• Finding an ϵ-envy-free allocation with contiguous pieces for n ≥ 3 players, where n is fixed,
requires Ω

(
log 1

ϵ

)
queries.

• Finding an ϵ-equitable allocation with contiguous pieces for n = 2 players requires
Ω
(
log 1

ϵ

)
queries.

• Finding an ϵ-perfect allocation with two cuts for n = 2 players requires Ω
(
log 1

ϵ

)
queries.

In the case of perfect allocations for two players, we are always guaranteed to have a solution with at
most two cuts, while a solution with one cut may not exist. The lower bounds for envy-freeness and
perfect allocations are the first query lower bounds for these problems. The main idea underpinning
these results is that of maintaining a self-reducible structure throughout the execution of a protocol,
which may be useful more generally for obtaining other lower bounds.

2.2 Upper Bounds

We give the following upper bounds for these fairness notions.

Theorem 2.2. Consider a cake cutting problem. In the standard (Robertson-Webb) query model for
cake cutting, for each ϵ > 0:

• An ϵ-envy-free allocation with contiguous pieces for n = 3 players can be found with
O(log 1

ϵ ) queries and for n ≥ 4 players with O(n/ϵ) queries.

• An ϵ-perfect allocation with at most two cuts for n = 2 players can be found with O(log 1
ϵ )

queries.

The upper bounds do not assume any restrictions on the valuations and the proofs rely on approxi-
mately simulating in the RW model two moving knife procedures, due to Barbanel-Brams [7] and
Austin [5], respectively. An upper bound of O

(
log 1

ϵ

)
for computing an ϵ-equitable allocation with

contiguous pieces between two players was given by Cechlarova and Pillarova [25].

A summary of our bounds for the query complexity of computing fair allocations can be found in
Figure 1, together with the results from previous literature.

2.3 Moving Knife Protocols

Our second main contribution is to formalize the class of moving knife procedures, which was
previously viewed as disjoint from the RW query model. Using this definition, we show that any fair
moving knife procedure with a fixed number of players and devices can be simulated in O(log 1

ϵ )
queries in the RW model when the players have value densities that are bounded from above by a
constant. The next theorem is written for an abstract fairness notion, which we later define.
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Theorem 2.3. Consider a cake cutting problem where the value densities are bounded from above
and below by strictly positive constants. Let M be an RW moving knife protocol with at most r steps,
such that M outputs F-fair allocations demarcated by at most a constant number C of cuts.

Then for each ϵ > 0, there is an RW protocol Mϵ that uses O
(
log 1

ϵ

)
queries and computes ϵ-F -fair

partitions demarcated with at most C cuts.

Figure 1: Query complexity of cake cutting in the standard query model. Our results are marked with
(∗). The lower bounds for finding ϵ-perfect and ϵ-equitable allocations for n ≥ 3 players hold for
any number of cuts [57]. The bounds for exact envy-free and proportional allocations hold for any
number of cuts, except the upper bound for proportional works for contiguous pieces.

This simulation immediately implies that all the known moving knife procedures, such as the
procedures designed by Austin, Barbanel-Brams, Webb [66], and Brams-Taylor-Zwicker [12], can be
simulated efficiently within ϵ-error in the RW model when the measures of the players are bounded. In
this context we also found a moving knife procedure for computing contiguous equitable allocations
for any number of players, which was discovered independently by Segal-Halevi [60]. Note that our
version of the protocol works only for hungry valuations (i.e. when the value densities are strictly
positive everywhere), while the protocol in [60] works for value densities that could be zero as well.

3 Model

The resource (cake) is represented as the interval [0, 1]. There is a set of players N = {1, . . . , n}
interested in the cake, such that each player i ∈ N is endowed with a private valuation function
Vi that assigns a value to every subinterval of [0, 1]. These values are induced by a non-negative
integrable value density function vi, so that for an interval I , Vi(I) =

∫
x∈I

vi(x) dx. The valuations

are additive, so Vi

(⋃m
j=1 Ij

)
=

∑m
j=1 Vi(Ij) for any disjoint intervals I1, . . . , Im ⊆ [0, 1]. The

value densities are non-atomic, and in fact sets of measure zero are worth zero to a player. Without
loss of generality, the valuations are normalized to Vi([0, 1]) = 1, for all i = 1 . . . n.

A piece of cake is a finite union of disjoint intervals. A piece is contiguous (or connected) if it consists
of a single interval. An allocation A = (A1, . . . , An) is a partition of the cake among the players,
such that each player i receives the piece Ai, the pieces are disjoint, and

⋃
i∈N Ai = [0, 1].

We say that a value density v is: (i) hungry if v(x) > 0 for all x ∈ [0, 1], (ii) uniform on an interval
[a, b] if v(x) = 1 for all x ∈ [a, b], and (iii) bounded on interval [a, b] if there exists a constant
D > 0 such that v(x) ≥ D for all x ∈ [a, b] (or simply bounded if a = 0 and b = 1). We will
sometimes to refer to a valuation (or player) as hungry to simply mean that the corresponding density
is strictly positive.

3.1 Fairness Notions

An allocation A is said to be proportional if Vi(Ai) ≥ 1/n for all i ∈ N ; envy-free if Vi(Ai) ≥ Vi(Aj)
for all i, j ∈ N ; perfect if Vi(Aj) = 1/n for all i, j ∈ N ; equitable if Vi(Ai) = c, for all i ∈ N
and some value c ∈ [0, 1]. In addition to allocations, we will refer to partitions as divisions of the
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cake into pieces where the number of pieces need not equal the number of players. A partition
A = (A1, . . . , Ak) is a k-measure splitting if Vi(Aj) = 1/k for each player i and piece Aj .

Envy-free allocations with contiguous pieces and equitable allocations with contiguous pieces always
exist [65, 24], while k-measure splittings exist with n(k − 1) cuts [2].

We will also be interested in ϵ-fair division, where the fairness constraints are satisfied within ϵ-error;
for instance, an allocation A is ϵ-envy-free if Vi(Ai) ≥ Vi(Aj)− ϵ, for each i, j = 1 . . . n, and an
(ϵ, k) measure splitting if Vi(Aj) ∈ (1/k − ϵ, 1/k + ϵ) for each i = 1 . . . n, j = 1 . . . k.

We consider an abstract definition for fairness notions that admit approximate versions as follows.
Definition 1 (Abstract fairness). A fairness notion F must satisfy the following condition:

• Let A = (A1, . . . , An) be an allocation that is F-fair with respect to valuations v⃗ = (v1 . . . vn).
For each ϵ > 0 and valuations v⃗′ = (v′1 . . . v

′
n), if |Vi(Aj) − V ′

i (Aj)| ≤ ϵ/2, ∀i, j ∈ N ,
then allocation A is ϵ-F-fair with respect to valuations v⃗′.

Proportionality, envy-freeness, and perfection are instantiations of this notion of abstract fairness. For
example, if an allocation A is envy-free with respect to some valuations v⃗, then A is also ϵ-envy-free
for valuations v⃗′ that are close to v⃗.

3.2 Query Complexity

All the discrete cake cutting protocols operate in a query model known as the Robertson-Webb
model (see, e.g., the book [58]), which was explicitly stated in [68]. In this model, the protocol
communicates with the players using the following types of queries:

• Cuti(α): Player i cuts the cake at a point y where Vi([0, y]) = α, where α ∈ [0, 1] is chosen
arbitrarily by the mediator 3. The point y becomes a cut point.

• Evali(y): Player i returns Vi([0, y]), where y is a previously made cut point.

An RW protocol asks the players a sequence of cut and evaluate queries, at the end of which it outputs
an allocation demarcated by cut points from its execution (i.e. cuts discovered through queries). Note
that the value of a piece [x, y] can be determined with two Eval queries, Evali(x) and Evali(y).

A second class of protocols is known as “moving-knife” (or continuous) procedures, which typically
involve sliding multiple knives across the cake, while evaluating the players’ valuations until some
stopping condition is met. This class has not been formalized until now. Examples of moving
knife procedures include Austin’s procedure, which computes a perfect allocation for two players,
Stromquist’s procedure, for finding a contiguous envy-free allocation for three players, and Dubins-
Spanier, for computing a proportional allocation for any number of players. Dubins-Spanier is the
only known moving knife procedure that can be simulated exactly in the RW model.

4 Envy-Free Allocations

Exact envy-free allocations are guaranteed to exist (see, e.g., Stromquist [63] and Su [65]), but cannot
be computed by finite RW protocols for n ≥ 3 players (see Stromquist [64]). For n = 2 players, an
exact envy-free allocation can be computed with O(1) queries via the Cut and Choose protocol.

We show that an ϵ-envy-free allocation with contiguous pieces can be computed with O(n/ϵ) queries
for n ≥ 3 players.
Theorem 4.1. For each cake cutting problem with n ≥ 3 players and every ϵ > 0, an ϵ-envy-free
allocation with contiguous pieces can be computed with O (n/ϵ) queries.

The proof is based on discretizing the cake via many queries; this type of discretization was used
before in cake cutting (e.g., [19]).

We further show that for three players, an ϵ-envy-free allocation with contiguous pieces can be
computed using only O

(
log 1

ϵ

)
queries.

Theorem 4.2. For each cake cutting problem with n = 3 players and every ϵ > 0, an ϵ-envy-free
allocation with contiguous pieces can be computed with O

(
log 1

ϵ

)
queries.

3Ties are resolved deterministically, using for example the leftmost point with this property.
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The idea is to approximately simulate a moving knife procedure due to Barbanel-Brams [7]. A
detail that must be handled is that a discrete RW protocol does not allow the mediator to cut the cake
directly, so the simulation has to search for the position of the “sword” in the moving knife protocol
by keeping track of a small interval that must be made very small from the perspective of each player.
The details can be found in the full version [20], together with the other omitted proofs.

Next we give a lower bound for three players; this will be extended to n ≥ 3 players in Theorem 4.4.
Theorem 4.3. For each ϵ > 0, computing a contiguous ϵ-envy-free allocation for three players
requires Ω

(
log 1

ϵ

)
queries.

Generally there are many envy-free allocations, so the proof must ensure that for a long enough
time none of these solutions are near. We will start from a family of valuations known as “rigid
measure systems” [64], which was invented by Stromquist to show that no exact contiguous envy-free
allocation can be computed in general in the RW model.

The difficulty is that while in [64] it was sufficient to avoid a single point in order for the protocol to
not be able to find an exact envy-free solution with one more query, here we must avoid an entire
interval and fit the valuations accordingly in order for an approximately envy-free solution to remain
far away after each additional query. We first slightly generalize rigid measure systems from [64], to
allow a different parameter ti for each player i. Then we will make a self reducible structure using
this family of valuations, which will then be used to give the required lower bound.
Definition 2. A tuple of value densities (v1, . . . , vn) is a generalized rigid measure system if:

• the density of each player i is bounded by: 1/
√
2 < vi(x) <

√
2, ∀x ∈ [0, 1].

• there exist points 0 = x0 < x1 < . . . < xn−1 < xn = 1 and values si, ti for each player
i such that 0 < si < 1/n < ti < 1/2 and Vj(xj−1, xj) = Vj(xj , xj+1) = tj for all
j = 1 . . . n− 1 and Vn(xn−1, xn) = Vn(0, x1) = tn.

See the full version [20] for an example. Generalized rigid measure systems satisfy the property that
the valuations of the players for any given piece cannot differ too much.
Lemma 1. Consider any cake cutting problem where for two players i and j where there exist
a, b > 0 such that for all x ∈ [0, 1], 1/a < vi(x) < b and 1/a < vj(x) < b. Then for any two pieces
S1, S2 of the cake, if Vi(S1) ≥ ab · Vi(S2), it follows that ab · Vj(S1) > Vj(S2).

A useful notion to measure how close a protocol is to discovering an approximately envy-free solution
on a given instance will be that of a partial rigid measure system.
Definition 3. A tuple of value densities (v1, v2, v3) is a partial rigid measure system if

• the density of each player i is bounded everywhere by: 1/
√
2 < vi(x) <

√
2, for all x ∈ [0, 1].

• there exist values k > 0 and 1/2 > ℓi > 1/3 > mi > 0 for each player i, and points
x, x′, y, y′ ∈ [0, 1], so that the matrix of valuations for pieces demarcated by these points is:

[0, x] [x, x′] [x′, y] [y, y′] [y′, 1]
V1 ℓ1 k ℓ1 k m1

V2 m2 k ℓ2 k ℓ2
V3 ℓ3 k m3 k ℓ3

Partial rigid measure systems have the next property: if P = {z1, . . . , zk} ⊂ [0, 1] is a collection of
cut points such that no points from P can be found in the intervals (x, x′) and (y, y′), then every
contiguous partition attainable using only cut points from P has envy at least 0.01k.
Lemma 2. Let (v1, v2, v3) be a partial rigid measure system with parameters k,mi, ℓi, x, x

′, y, y′ so
that Vi([x, x

′]) = Vi([y, y
′]) = k ∀i. If P = {z1, . . . , zt} ⊂ [0, 1] is a collection of cut points such

that (i) x, x′, y, y′ ∈ P and (ii) no points from P can be found in the intervals (x, x′) and (y, y′),
then each allocation with contiguous pieces demarcated by points in P has envy at least 0.01k.

Next we show how queries can be answered one at a time so that the valuations remain consistent
with (some) partial rigid measure system throughout the execution of a protocol.
Lemma 3. Suppose that at some point during the execution of an RW protocol for three players
the valuations and cut points are consistent with a partial rigid measure system with parameters
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Figure 2: Construction for envy-freeness.

k > 0, 0 < mi < 1/3 < ℓi < 1/2 for each i, and points x, y (i.e. as in Figure 2). If the intervals
I = [x, x+ k] and J = [y, y + k] have no cut points inside, then a new cut query can be answered
so that the valuations remain consistent with a partial rigid measure system where two new intervals
I ′ ⊆ I and J ′ ⊆ J have no length 0.01k and no cut points inside, and the densities of all the players
are uniform on I ′ and J ′.

Proof. (of Theorem 4.3) Set the initial configuration to a partial rigid measure system with k = 0.01,
ℓi = 0.35, mi = 0.28 for each player i. Let the initial cut points be 0.34, 0.35, 0.67, 0.68 and set the
intervals I = [0.34, 0.35] and J = [0.67, 0.68]. It can be verified there exist compatible valuations
for which the densities are in (1/

√
2,
√
2).

By iteratively applying Lemma 3 with every Cut query, the valuations remain consistent with a partial
rigid system, where the intervals I and J always have uniform density, and their length cannot be
diminished by a factor larger than 100 in each iteration. By Lemma 1, every configuration attainable
with the existing cut points when given a partial rigid system as input has envy of at least 0.01k. To
get ϵ-envy, we need k/100 < ϵ, and so the number of queries is Ω

(
log ϵ−1

)
.

The construction can be extended to give a lower bound for any number of players.
Theorem 4.4. Let n ≥ 3 be fixed. For each ϵ > 0, computing an ϵ-envy-free allocation with
contiguous pieces for n ≥ 3 players requires Ω

(
log 1

ϵ

)
queries.

The lower bound of Ω
(
log 1

ϵ

)
is in fact tight for the class of generalized rigid measure systems, for

any fixed number of players. To show this, we prove an upper bound of O
(
log 1

ϵ

)
for this class by

designing a moving knife procedure and then simulating it in the RW model.
Theorem 4.5. For the class of generalized rigid measure systems, an ϵ-envy-free allocation with
contiguous pieces can be computed with O

(
log 1

ϵ

)
queries for every fixed number n of players.

5 Perfect Allocations

We show that for n = 2 players, the problem of computing ϵ-perfect allocations can be solved more
efficiently by simulating Austin’s moving procedure in the RW model.
Theorem 5.1. For each cake cutting problem with n = 2 players and every ϵ > 0, an ϵ-perfect
allocation can be computed with O(log 1

ϵ ) queries.

We also show this bound is optimal by giving a matching lower bound.
Theorem 5.2. For each ϵ > 0, computing an ϵ-perfect allocation with the minimum number of cuts
for n = 2 players requires Ω

(
log 1

ϵ

)
queries.

We prove the lower bound by maintaining throughout the execution of any protocol two intervals in
which the cuts of the perfect allocation must be situated, such that the distance to a perfect partition
cannot decrease too much with any cut query. Note that Branzei and Nisan [21] gave a (weaker) lower
bound for finding ϵ-perfect allocations between two players in the communication model, which
implies a lower bound for query complexity (in the RW model or any other query model).
Lemma 4. Consider a cake cutting instance with n = 2 players and let ϵ > 0. Suppose a protocol
made a sequence of queries such that the valuations are consistent with Figure 3, for some parameters
x, y, a, b, c, d, e > 0, such that player 1 has uniform density everywhere, y = x+0.5, 0 < a, d ≤ 0.1,
x, b, c, e > 0, x+ a+ b = 0.5 c+ 2d+ e = 0.5, and moreover:

1. ϵ < 0.001min{a, d}
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Figure 3: Construction for the perfect lower bound.

2. every allocation demarcated by cuts k, ℓ ∈ (0, 1) with k < ℓ that is ϵ-perfect from the point
of view of player 1 is worth to player 2 less than 0.5 − d/100 − ϵ when k < x and more
than 0.5 + d/100 + ϵ when k > x+ a.

3. there are no cut points inside the intervals I = [x, x+ a] and J = [y, y + a].
Then one more query can be answered so that the valuations remain consistent with the history of the
protocol and conditions 2 and 3 still hold with respect to new parameters x′, a′ = a/100, d′ = d/100
and intervals I ′ = [x′, x′ + a′], J ′ = [y′, y′ + a′].

Proof of Theorem 5.2. Set the initial configuration consistent with Figure 3 for a suitable initial
choice of parameters. Then, by iteratively applying Lemma 4 with every cut query received, we will
obtain that the number of queries is Ω

(
log 1

ϵ

)
.

6 Equitable Allocations

Cechlarova, Dobos, and Pillarova [24] showed that for any number of players and any order, there
exists a contiguous equitable allocation in that order. Moreover, the equitable allocation is proportional
for some order of the players.
Theorem 6.1 ( Cechlarova and Pillarova [25]). For every fixed number n of players and each ϵ > 0,
a contiguous ϵ-equitable and proportional allocation can be computed with O(log 1

ϵ ) queries.

We give a matching lower bound for the number of queries required for finding ϵ-equitable allocations
with contiguous pieces between two players.
Theorem 6.2. For each ϵ > 0, computing an ϵ-equitable allocation with contiguous pieces for two
players requires Ω

(
log 1

ϵ

)
queries.

For two hungry players, the contiguous equitable and proportional allocation is unique.
Lemma 5. For two players with hungry valuations, the cut point of the equitable allocation is unique.

Next we show that when the valuations of the players are as in the next figure and no cuts may be
used from the interval (x, y), the distance from a contiguous equitable allocation is high.

Figure 4: Construction for equitable lower bound. The distance from a contiguous equitable and
proportional allocation is b− a, where 0 < a < b < 0.5 and 0 < x < y < 1.

Lemma 6. Consider a two player problem where there exist points 0 < x < y < 1 and values
0 < a < b < 0.5 such that the valuations are consistent with Figure 4, where V1(0, x) = 0.5 + a =
V2(y, 1), V2(x, 1) = 0.5 + b = V1(0, y). Then every contiguous allocation that uses cut points
outside the interval (x, y) has distance at least b− a from equitability.

Given such a configuration, queries can be handled in a way that preserves the symmetry and the
distance to equitability gets reduced by a constant factor.
Lemma 7. Consider a two player problem where there exist points 0 < x < y < 1 and values
0 < a < b < 0.5 such that V1(0, x) = 0.5 + a = V2(y, 1), V2(x, 1) = 0.5 + b = V1(0, y). Then
any Cut query (addressed to either player) can be answered so that the new configuration has two
new points z < t such that z, t ∈ (x, y), the valuations satisfy V1(0, z) = 0.5 + a′ = V2(t, 1),
V2(z, 1) = 0.5 + b′ = V1(0, t), and b′ − a′ ≥ (b− a)/100.

The proof of Theorem 6.2 follows by combining the previous lemmas (see full version [20]).
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7 Moving Knife Protocols

We will consider a family of protocols that seems to, on one hand, capture all types of protocols that
have so far been called “moving knife” procedures and, on the other hand, be simple enough for
a transparent simulation. An important ingredient of the definition is that knife positions must be
continuous. To ensure that “cut queries" fall within the definition, we will only require continuity for
hungry valuation functions. The formal definition can be found in the full version of the paper [20].
Theorem 7.1. Consider a cake cutting problem where the value densities are bounded from above
and below by strictly positive constants. Let M be an RW moving knife protocol with at most r steps,
such that M outputs F-fair allocations demarcated by at most a constant number C of cuts.

Then for each ϵ > 0, there is an RW protocol Mϵ that uses O
(
log 1

ϵ

)
queries and computes ϵ-F -fair

partitions demarcated with at most C cuts.
Theorem 7.2. The Austin, Austin’s extension, Barbanel-Brams, Stromquist, Webb, Brams-Taylor-
Zwicker, and Saberi-Wang moving knife procedures can be simulated with O

(
log 1

ϵ

)
RW queries

when the value densities are bounded from above and below by positive constants.

An Equitable Protocol: Next we show a simple moving knife protocol in the Robertson-Webb model
for computing equitable allocations for any number of hungry players. A moving knife procedure
for computing exact equitable allocations that works even when the valuations are not hungry was
discovered independently by Segal-Halevi [60].

Equitable Protocol : Player 1 slides a knife continuously across the cake, from 0 to 1. For each
position x1 of the knife, player 1 is asked for its value of the piece [0, x1]; then each player i = 2 . . . n
iteratively positions its own knife at a point xi ∈ [xi−1, 1] with Vi(xi−1, xi) = V1(0, x1) if possible,
and at xi = 1 otherwise.

Player n shouts “Stop!" when its own knife reaches the right endpoint of the cake (i.e., xn = 1). The
cake is allocated in the order 1 . . . n, with cuts at x1 . . . xn−1.

Theorem 7.3. There is an RW moving knife protocol that computes a contiguous equitable allocation
for every cake cutting instance with n hungry players.

This immediately implies a moving knife protocol for computing an allocation that is not only
equitable, but also proportional; this can be achieved by running Equitable Protocol for every
permutation of the players and choosing the one that is proportional.

8 The Stronger and Weaker Models

We also discuss two other query models. The first one, which we call RW+, is stronger in that the
inputs to evaluate queries need not be previous cut points and at the end the protocol can use arbitrary
points (i.e. not just cuts discovered through queries) to demarcate the final allocation.
Definition 4 (RW+ query model). An RW+ protocol for cake cutting communicates with the
players via two types of queries:

• Cuti(α): Player i cuts the cake at a point y where Vi([0, y]) = α, for any α ∈ [0, 1].

• Evali(y): Player i returns Vi([0, y]), for any y ∈ [0, 1].

At the end of execution an RW+ protocol outputs an allocation that can be demarcated by any points
of its choice, regardless of whether they have been discovered through queries or not.

The RW+ model differs from the RW model in subtle ways. For instance, in RW there exists a
characterization of truthful protocols (i.e. all truthful protocols are dictatorships for n = 2 players,
with a similar statement for n ≥ 3 players [19]). A similar characterization is not known in the RW+

model. However the RW+ model allows a general simulation of moving knife protocols without
requiring that valuations are bounded from below. Our constructions for the lower bounds work
against this stronger query model.

The lower bounds from the RW model still hold, since our constructions did not use in any crucial
way the fact that the evaluate inputs must come from previous cut queries.
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Corollary 1. Computing an ϵ-envy-free allocation with contiguous pieces among n = 3 players,
an ϵ-perfect allocation with two cuts between n = 2 players, and an ϵ-equitable allocation with
contiguous pieces between n = 2 players in the RW+ models requires Θ(log 1

ϵ ) queries. Computing
a contiguous ϵ-envy-free allocation for any fixed number n of players requires Ω(log 1

ϵ ) queries.

In the RW+ model we can simulate moving knife protocols without the requirement that the
valuations are bounded from below since the center can reduce (half) the time directly with each
iteration, instead of reducing it through the lens of the players’ valuations.
Theorem 8.1. Consider a cake cutting problem where the value densities are bounded from above
by constant D > 0. Let M be an RW+ moving knife protocol with at most r steps, such that M
outputs F-fair allocations demarcated by at most a constant number C of cuts.

Then for each ϵ > 0, there is an RW+ protocol Mϵ that uses O
(
log 1

ϵ

)
queries and computes

ϵ-F-fair partitions demarcated with at most C cuts.

We also introduce a weaker model, which we call RW−, where the protocol can ask the players only
the evaluate type of query.
Definition 5 (RW− query model). An RW− protocol for cake cutting communicates with the
players via queries of the form

• Evali(y): Player i returns Vi([0, y]), where y ∈ [0, 1] is arbitrarily chosen by the center.

At the end an RW− protocol outputs an allocation that can be demarcated by any points.

If the valuations are arbitrary, then an RW− protocol may be unable to find any fair allocation at all.
The reason is that no matter what queries an RW− protocol asks, one can hide the entire instance in
a small interval that has value 1 for all the players; this interval will shrink as more queries are issued,
but can be set to remain of non-zero length until the end of execution.

However, if the valuations are bounded from above4, then an RW− protocol is quite powerful.
Theorem 8.2. Suppose the valuations of the players are bounded from above by a constant D > 0.
Then any RW+ query can be answered within ϵ-error using O(log 1

ϵ ) RW− queries.

Proof. Let there be an instance with arbitrary valuations v1 . . . vn such that vi(x) < D for all
x ∈ [0, 1] and i ∈ N . Since an RW− protocol can use the same type of evaluate queries as an RW+

protocol, the simulation has to handle the case where the incoming query is a cut. Let this be Cuti(α)
and denote by x the correct answer to the query. In order to find an approximate answer using only
evaluate queries, initialize ℓ = 0, r = 1, and search for the correct answer: (∗) Let m = (ℓ+ r)/2.
Ask player i the query Evali(m) and let w be the answer given. If |w−α| ≤ ϵ, return m. Otherwise,
if m > α, set r = m, and if m < α, set ℓ = m; return to (∗). This procedure halves the interval [ℓ, r]
with every iteration. Moreover, from the bound on the valuations, an interval of length ϵ/D cannot be
worth more than ϵ to any player. Thus the search stops in O(log ϵ−1) rounds.

9 Discussion

An important open question is to obtain stronger lower bounds for n ≥ 4 players for computing
contiguous envy-free allocations and for n ≥ 3 players for perfect allocations with minimal number
of cuts. We conjecture that unlike equitability, which remains logarithmic in 1/ϵ for any number of
players, computing a contiguous ϵ-envy-free allocation for n = 4 players and an ϵ-perfect allocation
with minimal cuts for n = 3 players will require Ω( 1ϵ ) queries. Since moving knife protocols can be
simulated with O(log 1

ϵ ) queries, this would imply that no moving knife protocol exists for computing
an envy-free allocation for n ≥ 4 players or a perfect allocation for n ≥ 3 players (the existence of
such procedures has been posed as an open question, e.g. in [12]).

Acknowledgements We thank the reviewers for helpful feedback. This project has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and
Innovation Programme (grant agreement no. 740282). A part of this work was done while Simina
Brânzei was visiting the Simons Institute for the Theory of Computing.

4There exist other types of valuations on which the RW− model may be useful, such as piecewise constant
valuations defined on a grid, with the demarcations between intervals of different height known to the protocol.

10



References
[1] R. Alijani, M. Farhadi, M. Ghodsi, M. Seddighin, and A. S. Tajik. Envy-free mechanisms with

minimum number of cuts. In AAAI, pages 312–318, 2017.

[2] N. Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.

[3] Noga Alon and Andrei Graur. Efficient splitting of measures and necklaces, 2020.

[4] G. Amanatidis, E. Markakis, A. Nikzad, and A. Saberi. Approximation algorithms for computing
maximin share allocations. In ICALP, pages 39–51, 2015.

[5] A.K. Austin. Sharing a cake. The Mathematical Gazette, 66(437):212–215, 1982.

[6] H. Aziz and S. Mackenzie. A discrete and bounded envy-free cake cutting protocol for any
number of agents. In FOCS, pages 416–427, 2016.

[7] J. Barbanel and S. Brams. Cake division with minimal cuts: Envy-free procedures for 3 persons,
4 persons, and beyond. Math. Soc. Sci., 48:251–269, 2004.

[8] Vittorio Bilò, Ioannis Caragiannis, Michele Flammini, Ayumi Igarashi, Gianpiero Monaco,
Dominik Peters, Cosimo Vinci, and William S. Zwicker. Almost envy-free allocations with
connected bundles. In Avrim Blum, editor, 10th Innovations in Theoretical Computer Science
Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume 124 of
LIPIcs, pages 14:1–14:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[9] S. Bouveret, K. Cechlárová, E. Elkind, A. Igarashi, and D. Peters. Fair division of a graph. In
IJCAI, pages 135–141, 2017.

[10] Sylvain Bouveret, Katarína Cechlárová, Edith Elkind, Ayumi Igarashi, and Dominik Peters.
Fair division of a graph. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI’17, page 135–141. AAAI Press, 2017.

[11] S. Brams and A. Taylor. Fair Division: from cake cutting to dispute resolution. Cambridge
University Press, 1996.

[12] S. Brams, A. D. Taylor, and W. S. Zwicker. A moving-knife solution to the four-person envy-free
cake-division problem. Proceedings of the American Mathematical Society, 125(2):547–554,
1997.

[13] S. J. Brams, M. A. Jones, and C. Klamler. Proportional pie-cutting. Internat. J. Game Theory,
36(3):353–367, 2008.

[14] S. J. Brams and A. D. Taylor. An envy-free cake division protocol. Am. Math. Mon, 102(1):9–18,
1995.

[15] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors. Handbook of
Computational Social Choice. Cambridge University Press, 1 edition, 2016.

[16] S. Brânzei. A note on envy-free cake cutting with polynomial valuations. Information Processing
Letters, 115(2):93–95, 2015.

[17] S. Brânzei, H. Hosseini, and P. B. Miltersen. Characterization and computation of equilibria for
indivisible goods. In SAGT, pages 244–255, 2015.

[18] S. Brânzei, Y. Lv, and R. Mehta. To give or not to give: Fair division for single minded
valuations. In IJCAI, pages 123–129. AAAI Press, 2016.

[19] S. Branzei and P. B. Miltersen. A dictatorship theorem for cake cutting. In IJCAI, pages
482–488, 2015.

[20] Simina Brânzei and Noam Nisan. The query complexity of cake cutting. CoRR, abs/1705.02946,
2017.

11



[21] Simina Brânzei and Noam Nisan. Communication complexity of cake cutting. In Anna Karlin,
Nicole Immorlica, and Ramesh Johari, editors, Proceedings of the 2019 ACM Conference on
Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019, page 525. ACM,
2019.

[22] E. Budish. The combinatorial assignment problem: Approximate competitive equilibrium from
equal incomes. Journal of Political Economy, (119):1061–1103, 2011.

[23] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou. The efficiency of fair
division. Theory of Computing Systems, 50(4):589–610, 2012.

[24] K. Cechlarova, J. Dobos, and E. Pillarova. On the existence of equitable cake divisions. J. Inf.
Sci., 228:239–245, 2013.

[25] K. Cechlarova and E. Pillarova. On the computability of equitable divisions. Discrete Optimiza-
tion, 9:249–257, 2012.

[26] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little
charity guarantees almost envy-freeness. SIAM J. Comput., 50(4):1336–1358, 2021.

[27] Y. Chevaleyre, P. E. Dunne, M. Lemaitre U. Endriss, J. Lang, N. Maudet, J. Padget, S. Phelps,
J. A. Rodriguez-Aguilar, and P. Sousa. Issues in multiagent resource allocation. Informatica,
(30):3–31, 2006.

[28] Guillaume Chèze. Envy-free cake cutting: A polynomial number of queries with high probability,
2020.

[29] R. Cole, N. Devanur, V. Gkatzelis, K. Jain, T. Mai, V. V. Vazirani, and S. Yazdanbod. Convex
program duality, fisher markets, and nash social welfare. In EC, pages 459–460, 2017.

[30] S. Dehghani, A. Farhadi, M. T. Hajiaghayi, and H. Yami. Envy-free chore division for an
arbitrary number of agents. In SODA, pages 2564–2583, 2018.

[31] Argyrios Deligkas, Aris Filos-Ratsikas, and Alexandros Hollender. Two’s company, three’s
a crowd: Consensus-halving for a constant number of agents. In Péter Biró, Shuchi Chawla,
and Federico Echenique, editors, EC ’21: The 22nd ACM Conference on Economics and
Computation, Budapest, Hungary, July 18-23, 2021, pages 347–368. ACM, 2021.

[32] X. Deng, Q. Qi, and A. Saberi. Algorithmic solutions for envy-free cake cutting. Oper. Res,
60(6):1461–1476, 2012.

[33] L. E. Dubins and E. H. Spanier. How to cut a cake fairly. Am. Math. Mon, 68(1):1–17, 1961.

[34] J. Edmonds and K. Pruhs. Cake cutting really is not a piece of cake. In SODA, pages 271–278,
2006.

[35] Edith Elkind, Erel Segal-Halevi, and Warut Suksompong. Mind the gap: Cake cutting with
separation. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pages 5330–5338. AAAI Press, 2021.

[36] S. Even and A. Paz. A note on cake cutting. Discrete Applied Mathematics, 7(3):285 – 296,
1984.

[37] Alireza Farhadi and MohammadTaghi Hajiaghayi. On the complexity of chore division. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pages 226–232. International Joint Conferences on Artificial Intelligence Organiza-
tion, 7 2018.

[38] A. Filos-Ratsikas and P. Goldberg. Consensus halving is ppa-complete. In STOC, 2018.

[39] Aris Filos-Ratsikas, Kristoffer Arnsfelt Hansen, Kasper Hogh, and Alexandros Hollender. Fixp-
membership via convex optimization: Games, cakes, and markets. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 827–838, 2022.

12



[40] Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis.
Consensus-halving: Does it ever get easier? In Proceedings of the 21st ACM Conference
on Economics and Computation, EC ’20, page 381–399, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[41] G. Gamow and M. Stern. Puzzle math. Viking Adult, 1958.

[42] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant
resource fairness: Fair allocation of multiple resource types. In NSDI, pages 323–336, 2011.

[43] Paul Goldberg, Alexandros Hollender, and Warut Suksompong. Contiguous cake cutting:
Hardness results and approximation algorithms. J. Artif. Intell. Res., 69:109–141, 2020.

[44] Paul W. Goldberg, Alexandros Hollender, Ayumi Igarashi, Pasin Manurangsi, and Warut
Suksompong. Consensus halving for sets of items. In Xujin Chen, Nikolai Gravin, Martin
Hoefer, and Ruta Mehta, editors, Web and Internet Economics - 16th International Conference,
WINE 2020, Beijing, China, December 7-11, 2020, Proceedings, volume 12495 of Lecture
Notes in Computer Science, pages 384–397. Springer, 2020.

[45] J. Goldman and A. D. Procaccia. Spliddit: Unleashing fair division algorithms. ACM SIG. Exch,
13(2):41–46, 2014.

[46] Ayumi Igarashi and Frédéric Meunier. Envy-free division of multi-layered cakes. In Michal
Feldman, Hu Fu, and Inbal Talgam-Cohen, editors, Web and Internet Economics - 17th Inter-
national Conference, WINE 2021, Potsdam, Germany, December 14-17, 2021, Proceedings,
volume 13112 of Lecture Notes in Computer Science, pages 504–521. Springer, 2021.

[47] Maria Kyropoulou, Josué Ortega, and Erel Segal-Halevi. Fair cake-cutting in practice. Games
Econ. Behav., 133:28–49, 2022.

[48] Pasin Manurangsi and Warut Suksompong. Closing gaps in asymptotic fair division. SIAM
Journal on Discrete Mathematics, 35(2):668–706, 2021.

[49] H. Moulin. Fair Division and Collective Welfare. The MIT Press, 2003.

[50] J. Neyman. Un theorem d’existence. C. R. Acad. Sci. Paris, 222:843–845, 1946.

[51] Hoon Oh, Ariel D. Procaccia, and Warut Suksompong. Fairly allocating many goods with few
queries. SIAM Journal on Discrete Mathematics, 35(2):788–813, 2021.

[52] A. Othman, C. Papadimitriou, and A. Rubinstein. The complexity of fairness through equilib-
rium. ACM Trans. Econ. Comput., 4(4):20:1–20:19, 2016.

[53] B. Plaut and T. Roughgarden. Almost envy-freeness with general valuations. In SODA, pages
2584–2603, 2018.

[54] Benjamin Plaut and Tim Roughgarden. Communication complexity of discrete fair division.
In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2014–2033. SIAM, 2019.

[55] A. D. Procaccia. Thou shalt covet thy neighbor’s cake. In IJCAI, pages 239–244, 2009.

[56] A. D. Procaccia. Cake cutting: Not just child’s play. Communications of the ACM, 56(7):78–87,
2013.

[57] A. D. Procaccia and J. Wang. A lower bound for equitable cake cutting. In ACM EC, pages
479–495, 2017.

[58] J. M. Robertson and W. A. Webb. Cake Cutting Algorithms: Be Fair If You Can. A. K. Peters,
1998.

[59] Erel Segal-Halevi. Fairly dividing a cake after some parts were burnt in the oven. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’18, page 1276–1284, Richland, SC, 2018. International Foundation for Autonomous Agents
and Multiagent Systems.

13



[60] Erel Segal-Halevi and Balázs Sziklai. Resource-monotonicity and population-monotonicity in
connected cake-cutting. Math. Soc. Sci., 95:19–30, 2018.

[61] F. W. Simmons. Private communication to michael starbird. 1980.

[62] H. Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

[63] W. Stromquist. How to cut a cake fairly. Am. Math. Mon, (8):640–644, 1980. Addendum, vol.
88, no. 8 (1981). 613-614.

[64] W. Stromquist. Envy-free cake divisions cannot be found by finite protocols. Electron. J.
Combin., 15, 2008.

[65] F. E. Su. Rental harmony: Sperner’s lemma in fair division. Am. Math. Mon, 106:930–942,
1999.

[66] W. Webb. But he got a bigger piece than i did, 1978. preprint, n.d.

[67] D. Weller. Fair division of a measurable space. Journal of Mathematical Economics, 14(5),
1985.

[68] G. J. Woeginger and J. Sgall. On the complexity of cake cutting. Discrete Optimization,
4:213–220, 2007.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]

14



(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


	Introduction
	Our Contribution
	Lower Bounds
	Upper Bounds
	Moving Knife Protocols

	Model
	Fairness Notions
	Query Complexity

	Envy-Free Allocations
	Perfect Allocations
	Equitable Allocations
	Moving Knife Protocols
	The Stronger and Weaker Models
	Discussion

